BZR1 and BES1 participate in regulation of glucosinolate biosynthesis by brassinosteroids in Arabidopsis

نویسندگان

  • Rongfang Guo
  • Hongmei Qian
  • Wangshu Shen
  • Lihong Liu
  • Min Zhang
  • Congxi Cai
  • Yanting Zhao
  • Junjie Qiao
  • Qiaomei Wang
چکیده

The effect of 24-epibrassinolide (EBR) on glucosinolate biosynthesis in Arabidopsis thaliana was investigated in the present study by using mutants and transgenic plants involved in brassinosteroid (BR) biosynthesis and signal transduction, as well as glucosinolate biosynthesis. The results showed that EBR significantly decreased the contents of major aliphatic glucosinolates including glucoiberin (S3), glucoraphanin (S4), and glucoerucin (T4), as well as the indolic glucosinolates glucobrassicin (IM) and neoglucobrassicin (1IM). In addition, a significantly higher level of glucosinolates accumulated in the BR-deficient mutant cpd and a dramatically lower glucosinolate content in the transgenic plant DWF4-ox overexpressing the BR biosynthetic gene DWF4 compared with their related wild-types, confirmed the repressing effect of BR on glucosinolate biosynthesis. BRI1, the receptor of BR signal transduction, was involved in regulation of glucosinolate biosynthesis by BR. Furthermore, the observation of reduced content of glucosinolates and lower expression levels of glucosinolate biosynthetic genes in 35S-BZR1/bzr1-1D and bes1-D plants compared with the corresponding wild-types suggested that BZR1 and BES1, two important components in BR signal transduction, are responsible for the inhibiting role of BR in glucosinolate biosynthesis. The disappearance of the repressing effect of BR on glucosinolate content in the myb28, myb34, and myb122 mutants indicated that these three MYB factors are important for the regulation of BR in glucosinolate biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ASKθ, a group-III Arabidopsis GSK3, functions in the brassinosteroid signalling pathway

Brassinosteroids (BRs) are plant hormones that regulate many processes including cell elongation, leaf development, pollen tube growth and xylem differentiation. GSK3/shaggy-like kinases (GSK) are critical regulators of intracellular signalling initiated by the binding of BR to the BRI1 receptor complex. Three GSKs have already been shown to relay BR responses, including phosphorylation of the ...

متن کامل

Formation and dissociation of the BSS1 protein complex regulates plant development via brassinosteroid signaling.

Brassinosteroids (BRs) play important roles in plant development and the response to environmental cues. BIL1/BZR1 is a master transcription factor in BR signaling, but the mechanisms that lead to the finely tuned targeting of BIL1/BZR1 by BRs are unknown. Here, we identified BRZ-SENSITIVE-SHORT HYPOCOTYL1 (BSS1) as a negative regulator of BR signaling in a chemical-biological analysis involvin...

متن کامل

Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression.

Plant steroid hormones, brassinosteroids (BRs), regulate essential growth and developmental processes. BRs signal through membrane-localized receptor BRI1 and several other signaling components to regulate the BES1 and BZR1 family transcription factors, which in turn control the expression of hundreds of target genes. However, knowledge about the transcriptional mechanisms by which BES1/BZR1 re...

متن کامل

The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis.

Brassinosteroids (BRs) are a class of steroid hormones essential for normal growth and development in plants. BR signaling involves the cell-surface receptor BRI1, the glycogen synthase kinase-3-like kinase BIN2 as a negative regulator, and nuclear proteins BZR1 and BZR2/BES1 as positive regulators. The interactions among these components remain unclear. Here we report that BRs induce dephospho...

متن کامل

An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis.

Brassinosteroids (BRs) are essential hormones for plant growth and development. BRs regulate gene expression by inducing dephosphorylation of two key transcription factors, BZR1 and BZR2/BES1, through a signal transduction pathway that involves cell-surface receptors (BRI1 and BAK1) and a GSK3 kinase (BIN2). How BR-regulated phosphorylation controls the activities of BZR1/BZR2 is not fully unde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2013